Comments to sheets of aggregates

Results of experiments performed within the Research and progress/advancement project: **The dependency of shrinkage value obtained by drying of aggregates on the petrographical composition** have been treated in reduced form of aggregates sheets. Each of aggregate locality has the separate aggregate list, which contains the following information:
- location
- display the aggregate specimen in scale 1:1
- composition of aggregates
- selected properties of aggregates
- strength in compression and modulus of elasticity used to determine the value of shrinkage obtained by drying

Under selection of localities producing aggregates the following matters were taken into account:
- presence of significant producers of aggregates,
- creation of the widest variability of aggregate types,
- proportional covering of the territory of Slovakia.

The fraction 8/16 or related fractions (8/11, 12.5/16) are generally displayed. The scale of the aggregate on the printed A4 sheet is 1:1.

A meaning of a term „basic mass“ also used in mineralogical description varies in dependence on the type of original rock and locality.

Andesite:
Vechec: hyalite sporadically slightly recrystallized, the smallish bars of plagioclases of largeness 0.05-0.1 mm are present.

Čierne Kľačany: hyalite, in the basic hyaline mass microliths 0.01 mm, spicules of plagioclase of largeness predominantly to 0.01 mm, wythern grains, accessory chlorite and apatit are present

Brehov: hyaline, smallish tables of plagioclases forming intersert structure with hypidiomorphic to idiomorphic grains of accessory magnetite. Clusters of carbonates - ankerite (to 0.2 mm) grains are present in the basic mass.
melaphyre
Sološnica hyaline
Dubina: fine-grained melaphyre formed by translucent outwards vulcanic glass, in which, smallish, thin bars of plagioclase to largeness 0.15 mm are present. The orientation of these bars shows up the fluidic structure.

Malužiná fine-grained recrystallized, formed by smallish grains of quartz and plagioclase. The diffused grains of hematite and rarely the thin strings of quartz occur in it.

Basalt
Čarnovce: hyaline or recrystallized, formed by vulcanic glass with smallish grains of olivine and plagioclase.

Dioritic porphyrite
Vyšná Šebastová: fine-grained, slightly recrystallized and vitrificated. Sporadically smallish grains of minerals forming porphyric phenocrysts.

The selected properties of aggregates were tested using concrete specimens according to the Standard STN EN 1367-4 for testing the shrinkage value of aggregate by drying. The value of water-absorption for fraction 0/20 was stated by calculation from those obtained for fractions 0/4 and 4/20.

The tests of compressive strength and modulus of elasticity of concrete were accomplished on concrete specimens with the same composition as for concrete specimens used to determine the shrinkage values of aggregates.

The compressive strengths were obtained after 28 days of concrete hardening. The given values represent the mean value from three tests interpreted as cube strengths. The tests were realized on cubes (150x150x150 mm) and cylinders (150x300 mm and 100x200 mm). The cylindrical strength was transformed to cubic strength applying factors suggested by firm Proceq.

The values of modulus of elasticity represent the 28 day old concrete secant values determined for the cylindrical test specimen 150x300 mm. The values are the mean values from two tests measured on the cylinder 150x300 mm and cylinder 100 x200. The transformation was carried out using the size- factor suggested by firm Proseq.

The measured values can not be accepted as definite because the properties of aggregates vary during the production, so they are not invariable. However, values determined under the same testing conditions on the specimens with the identical weighted contents (only one amount of cement was used) and strictly regulated granularity curve of aggregates, form specific relation between mechanical properties of concrete and aggregates used in concrete mixture.

The presentation of results by aggregate sheets makes it possible to obtain basic review about influence of different types of aggregates on the important properties of concrete, which can be utilized whether for the design of concrete mixture or for the specification of calculation to guess the shrinkage caused deformation according to STN EN 1992-1-1.
LOCALITY: VYSOKÁ PRI MORAVE

MINERAL COMPOSITION:
- 46.7% quartz
- 10.7% limestone
- 4.7% dolomite
- 8% granite
- 6.6% vulcanite
- 17.3% quartzite
- 6% silicite

WATER ABSORPTION (%):
- Aggregate size 0/4: 0.1
- Aggregate size 4/20: 1.0
- Aggregate size 0/20: 0.6

PARTICLE DENSITY \(\rho_{ssd} \) (Mg.m\(^{-3}\)):
- Aggregate size 0/4: 2.59
- Aggregate size 4/20: 2.61

SHAPE INDEX: 3 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

Drying shrinkage of aggregate according to EN 1367-4 (%):

Compressive strength of concrete according to EN 12390-3 (MPa):

Static modulus of elasticity of concrete in compression acc. to ISO 6784 (GPa):

Note: Composition of concrete according to EN 1367-4, table 1.
LOCALITY: NOVÉ KOŠARISKÁ

MINERAL COMPOSITION:
61.7% quartz, 7.2% limestone,
3.6% granite, 3.6% sandstone,
16.7% quartzite, 7.2% metamorphite

WATER ABSORPTION (%)
aggregate size 0/4: 0.1
aggregate size 4/20: 0.9
aggregate size 0/20: 0.6

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2.56
aggregate size 4/20: 2.60
SHAPE INDEX: 11%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:
DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
GRAVEL

LOCALITY: GABČÍKOVO

MINERAL COMPOSITION:
83.4% quartz, 8.3% limestone,
2% granite, 2.5% sandstone
2.5% quartzite, 1.3% metamorphite

WATER ABSORPTION (%)
aggregate size 0/4: 0.2
aggregate size 4/20: 0.6
aggregate size 0/20: 0.4

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2.57
aggregate size 4/20: 2.62
SHAPE INDEX: 7%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
LOCALITY: ŠOPORŇA

MINERAL COMPOSITION:
10,7% limestone, 4,7% dolomite,
8% granite, 6,6% vulcanite,
17,3% quartzite, 6% silicite

WATER ABSORPTION (%)
aggregate size 0/4: 0,4
aggregate size 4/20: 1,3
aggregate size 0/20: 0,9

PARTICLE DENSITY ρ(ssd) (Mg.m⁻³)
aggregate size 0/4: 2,48
aggregate size 4/20: 2,58

SHAPE INDEX: 12 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:
DRIYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

< GRAVELS > | < SEDIMENTARY ROCKS > | IGNEOUS ROCKS
(limestone, dolomite)
(andesite, melaphyre, porphyrite,
basalt, granodiorite)

Note: Composition of concrete according to EN 1367-4, table 1.
LOCALITY: POVAŽANY

MINERAL COMPOSITION:
60% sandstone, 25% granite, 10% quartz

WATER ABSORPTION (%)
aggregate size 0/4: 0,1
aggregate size 4/20: 1,2
aggregate size 0/20: 0,7

SHAPE INDEX ρ_{bad} (Mg.m$^{-3}$)
aggregate size 0/4: 2,45
aggregate size 4/20: 2,64

TVAROVAI INDEX: 11%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
LOCALITY: VRÚTKY - LIPOVEC

MINERAL COMPOSITION:
65% quartz, 12% K-feldspar,
3% mica, 7% vulcanite,
1% limonite, 13% clayey filler

WATER ABSORPTION (%)
aggregate size 0/4: 0.1
aggregate size 4/20: 1.0
aggregate size 0/20: 0.6

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2.71
aggregate size 4/20: 2.67
SHAPE INDEX: 10%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRIED SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

<table>
<thead>
<tr>
<th>LOCALITY</th>
<th>DRIED SHRINKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRÚTKY - LIPOVEC</td>
<td>0.06</td>
</tr>
</tbody>
</table>

COMPRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

<table>
<thead>
<tr>
<th>LOCALITY</th>
<th>COMPRESSIVE STRENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRÚTKY - LIPOVEC</td>
<td>29.4</td>
</tr>
</tbody>
</table>

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

<table>
<thead>
<tr>
<th>LOCALITY</th>
<th>STATIC MODULUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRÚTKY - LIPOVEC</td>
<td>30.2</td>
</tr>
</tbody>
</table>

Note: Composition of concrete according to EN 1367-4, table 1.
LOCALITY: PALÚDZKA - LIPTOVSKÁ MARA

MINERAL COMPOSITION:
52% granodiorite, 5% aplite,
20% sandstone, 5% quartzite,
18% limestone

WATER ABSORPTION (%)
aggregate size 0/4 : 0,1
aggregate size 4/20 : 0,9
aggregate size 0/20 : 0,6

PARTICLE DENSITY ρ_{ssd} (Mg.m⁻³)
aggregate size 0/4 : 2,51
aggregate size 4/20 : 2,56

SHAPE INDEX : 22 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES :

DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
MINERAL COMPOSITION:
37% quartz, 50% plagioclase,
11% biotite, 2% muscovite,
0.1% magnetite, 0.1% apatite

WATER ABSORPTION (%)
aggregate size 0/4: 0.3
aggregate size 4/20: 1.1
aggregate size 0/20: 0.8

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2.62
aggregate size 4/20: 2.65

SHAPE INDEX: 9 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:
DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
LOCALITY: PLAVEČ - ORLOV

MINERAL COMPOSITION:
- 25% granodiorite, 30% sandstone,
- 25% mudstone, 15% calcite,
- 5% quartz and quartzite

WATER ABSORPTION (%)
- aggregate size 0/4: 0.2
- aggregate size 4/20: 2.7
- aggregate size 0/20: 1.6

PARTICLE DENSITY ρ_{ssd} (Mg.m⁻³)
- aggregate size 0/4: 2.57
- aggregate size 4/20: 2.67

SHAPE INDEX: 9%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
MINERAL COMPOSITION:
7% amphibolite, 36% gneiss, 10% granitoid, 17% quartz, 20% calcite and dolomite, 10% sandstone

WATER ABSORPTION (%)
aggregate size 0/4 : 0,4
aggregate size 4/20 : 1,2
aggregate size 0/20 : 0,9

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4 : 2,63
aggregate size 4/20 : 2,69

SHAPE INDEX : 16 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:
Drying Shrinkage of Aggregate According to EN 1367-4 (%)

Compressive Strength of Concrete According to EN 12390-3 (MPa)

Staticky Modul Pruznosti Betonu V Tlaku Podla STN ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
LIMESTONE

LOCALITY: ŽÍRANY

MINERAL COMPOSITION:
93% calcite, 4% dolomite

WATER ABSORPTION (%)
- Aggregate size 0/4: 0.4
- Aggregate size 4/20: 0.4
- Aggregate size 0/20: 0.4

PARTICLE DENSITY \(\rho_{ssd} \) (Mg.m\(^{-3}\))
- Aggregate size 0/4: 2.74
- Aggregate size 4/20: 2.70

SHAPE INDEX: 4%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.

TSÚS n. o., branch Košice
LK_11
SILICA LIMESTONE

LOCALITY: TUNEŽICE

MINERAL COMPOSITION:
90% calcite, 10% quartz

WATER ABSORPTION (%)
- Aggregate size 0/4: 0.5
- Aggregate size 4/20: 0.7
- Aggregate size 20/40: 0.6

PARTICLE DENSITY \(\rho_{ssd} \) (Mg.m\(^{-3}\))
- Aggregate size 0/4: 2.27
- Aggregate size 4/20: 2.73

SHAPE INDEX: 15%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

Drying Shrinkage of Aggregate According to EN 1367-4 (%)

<table>
<thead>
<tr>
<th>LOCALITY</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUNEŽICE</td>
<td>0.022</td>
</tr>
</tbody>
</table>

Compressive Strength of Concrete According to EN 12390-3 (MPa)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength</td>
<td>33.1</td>
</tr>
</tbody>
</table>

Static Modulus of Elasticity of Concrete in Compression Acc. to ISO 6784 (GPa)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Modulus</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Note: Composition of concrete according to EN 1367-4, table 1.
DOLOMITIC LIMESTONE

LOCALITY: VARÍN

MINERAL COMPOSITION:
81.1% calcite, 11% dolomite, 3% quartz, 0.7% corundum

WATER ABSORPTION (%)
aggregate size 0/4: 0.0
aggregate size 4/20: 0.7
aggregate size 0/20: 0.4

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2.60
aggregate size 4/20: 2.75

SHAPE INDEX: 13%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:
DRIED SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.

TSÚS n.o., branch Košice
MINERAL COMPOSITION:
100% calcite

WATER ABSORPTION (%)
aggregate size 0/4: 0.2
aggregate size 4/20: 0.3
aggregate size 0/20: 0.2

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2.79
aggregate size 4/20: 2.71

SHAPE INDEX: 4%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:
DRIYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
MINERAL COMPOSITION:
100% calcite, occasional limonite and pyrite

WATER ABSORPTION (%)
aggregate size 0/4: 0.5
aggregate size 4/20: 0.5
aggregate size 0/20: 0.5

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2.62
aggregate size 4/20: 2.70

SHAPE INDEX: 5 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRESSION STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
LIMESTONE

MINERAL COMPOSITION:
100% calcite, occasional hematite and limonite

WATER ABSORPTION (%)
aggregate size 0/4: 1.3
aggregate size 4/20: 0.2
aggregate size 0/20: 0.7

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
age aggregate size 0/4: 2.69
aggregate size 4/20: 2.71

SHAPE INDEX: 17%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
MINERAL COMPOSITION:
100% calcite

WATER ABSORPTION (%)
- Aggregate size 0/4: 0,2
- Aggregate size 4/20: 0,9
- Aggregate size 0/20: 0,6

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
- Aggregate size 0/4: 2,38
- Aggregate size 4/20: 2,69

SHAPE INDEX: 14 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
MINERAL COMPOSITION: 100% dolomite

WATER ABSORPTION (%)
aggregate size 0/4: 0.5
aggregate size 4/20: 0.6
aggregate size 0/20: 0.5

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2.59
aggregate size 4/20: 2.61
SHAPE INDEX: 18%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
DOLOMITE

LOCALITY: TREBEJOV

MINERAL COMPOSITION: 100% dolomite

WATER ABSORPTION (%)
aggregate size 0/4: 0.5
aggregate size 4/20: 0.5
aggregate size 0/20: 0.5

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2.60
aggregate size 4/20: 2.69

SHAPE INDEX: 6%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:
Drying shrinkage of aggregate according to EN 1367-4 (%)

Compressive strength of concrete according to EN 12390-3 (MPa)

Static modulus of elasticity of concrete in compression acc. to ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
ANDESITE

MINERAL COMPOSITION:
70% basic mass,
20% plagioclase, 5% pyroxenite,
1.7% ore minerals,
occasional apatite

WATER ABSORPTION (%)
aggregate size 0/4 : 1.5
aggregate size 4/20 : 1.8
aggregate size 0/20 : 1.7

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4 : 2.35
aggregate size 4/20 : 2.53

SHAPE INDEX : 8 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:
DRIYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
ANDESITE

LOCALITY: KRNIŠOV - TEPLIČKY

MINERAL COMPOSITION:
52% plagioclase, 39% pyroxenite,
8% ore, 1% biotite

WATER ABSORPTION (%)
aggregate size 0/4: 1.6
aggregate size 4/20: 1.2
aggregate size 0/20: 1.4

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2.51
aggregate size 4/20: 2.63

SHAPE INDEX: 15 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:
Drying Shrinkage of Aggregate According to EN 1367-4 (%)

Compressive Strength of Concrete According to EN 12390-3 (MPa)

Static Modulus of Elasticity of Concrete in Compression Acc. to ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
ANDESITE

MINERAL COMPOSITION:
43% basic mass,
38% plagioclase, 10% pyroxenite,
0,9% ore minerals

WATER ABSORPTION (%)
aggregate size 0/4 : 3,7
aggregate size 4/20 : 3,8
aggregate size 0/20 : 3,8

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4 : 2,57
aggregate size 4/20 : 2,60
SHAPE INDEX : 18 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPREHENSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
ANDESITE

LOCALITY: ŠIATORSKÁ BUKOVINKA

MINERAL COMPOSITION:
33% basic mass, 48% plagioclase, 12% pyroxenite, 3% ore minerals, 1% biotite

WATER ABSORPTION (%)
aggregate size 0/4: 0.8
aggregate size 4/20: 2.2
aggregate size 0/20: 1.6

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2.72
aggregate size 4/20: 2.70

SHAPE INDEX: 15%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
LOCALITY: VECHEC

MINERAL COMPOSITION:
43% basic mass,
42% plagioclase
(oligoclase - andesine),
15% klinopyroxen,
0.4% ore minerals

WATER ABSORPTION (%)
aggregate size 0/4 : 0.5
aggregate size 4/20 : 1.6
aggregate size 0/20 : 1.1

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4 : 2.71
aggregate size 4/20 : 2.75

SHAPE INDEX : 13 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:
Drying shrinkage of aggregate according to EN 1367-4 (%)

Compressive strength of concrete according to EN 12390-3 (MPa)

Static modulus of elasticity of concrete in compression acc. to ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
ANDESITE

MINERAL COMPOSITION:
59% basic mass,
30% plagioclase (oligoclase),
10% pyroxenite, 1% magnetite

WATER ABSORPTION (%)
aggregate size 0/4: 0,3
aggregate size 4/20: 1,2
aggregate size 0/20: 0,9

PARTICLE DENSITY ρ_{sd} (Mg.m$^{-3}$)
aggregate size 0/4: 2,68
aggregate size 4/20: 2,72

SHAPE INDEX: 19 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRIYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

Compressive strength of concrete according to EN 12390-3 (MPa)

Static modulus of elasticity of concrete in compression acc. to ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
LOCALITY: SOLOŠNICA

MINERAL COMPOSITION:
70% plagioclase, 20% klinopyroxen, 10% albite, chlorite, K-feldspar, quartz, epidote, calcite, dolomite, baryte

WATER ABSORPTION (%)
aggregate size 0/4: 1.0
aggregate size 4/20: 0.9
aggregate size 0/20: 0.9

PARTICLE DENSITY ρssd (Mg.m⁻³)
aggregate size 0/4: 2.65
aggregate size 4/20: 2.77

SHAPE INDEX: 4 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRIED SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
MELAPHYRE

MINERAL COMPOSITION:
49% plagioclase, 16% volcanic glass,
14% klinopyroxen-augite,
12% skio hypersthene, 8% olivine,
occasional magnetite, pyrite, chalcopyrite

WATER ABSORPTION (%)
aggregate size 0/4 : 0,2
aggregate size 4/20 : 1,3
aggregate size 0/20 : 0,8

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4 : 2,68
aggregate size 4/20 : 2,87

SHAPE INDEX : 15 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:
DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
MELAPHYRE PORPHYRITE

LOCALITY: LIPTOVSKÁ PORÚBKA - MALUŽINÁ

MINERAL COMPOSITION:
72% basic mass, 25% plagioclase, 2% quartz, 1% ore minerals

WATER ABSORPTION (%)
aggregate size 0/4: 0,3
aggregate size 4/20: 0,6
aggregate size 0/20: 0,5

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2,66
aggregate size 4/20: 2,85

SHAPE INDEX: 6 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:
DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
LOCALITY: HRANOVNICA - DUBINA

MINERAL COMPOSITION:
55% basic mass,
30% plagioclase, 10% quartz,
2% chlorite, 3% calcite

WATER ABSORPTION (%)
aggregate size 0/4: 0.1
aggregate size 4/20: 0.1
aggregate size 0/20: 0.1

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2.69
aggregate size 4/20: 2.86
SHAPE INDEX: 9%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRIED SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
LOCALITY: HUSINÁ

MINERAL COMPOSITION:
20% olivine, 30% plagioclase,
45% volcanic glass,
5% ore materials

WATER ABSORPTION (%)
aggregate size 0/4: 1.7
aggregate size 4/20: 1.7
aggregate size 0/20: 1.7

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2.79
aggregate size 4/20: 2.82
SHAPE INDEX: 25%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:
DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRESSION STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
OLIVINE BASALT

LOCALITY: ČAMOVCE

MINERAL COMPOSITION:
35% plagioclase, 15% olivine,
5% pyroxenite, 45% volcanic glass

WATER ABSORPTION (%)
aggregate size 0/4: 0,1
aggregate size 4/20: 1,3
aggregate size 0/20: 0,8

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2,80
aggregate size 4/20: 2,86

SHAPE INDEX: 8 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
DIORITIC PORPHYRITE

LOCALITY: VYŠNÁ ŠEBASTOVÁ - MAGLOVEC

MINERAL COMPOSITION:
- 45% basic mass,
- 41% plagioclase, 5% pyroxene,
- 8% amphibole, 1% ore materials

WATER ABSORPTION (%)
- Aggregate size 0/4: 1.1
- Aggregate size 4/20: 2.1
- Aggregate size 0/20: 1.7

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
- Aggregate size 0/4: 2.44
- Aggregate size 4/20: 2.62

SHAPE INDEX: 9%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

<table>
<thead>
<tr>
<th>LOCALITY</th>
<th>0.052</th>
<th>0.000</th>
<th>0.120</th>
</tr>
</thead>
<tbody>
<tr>
<td>VYŠNÁ ŠEBASTOVÁ - MAGLOVEC</td>
<td>0.052</td>
<td>0.000</td>
<td>0.120</td>
</tr>
</tbody>
</table>

COMPRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

<table>
<thead>
<tr>
<th>GRAVELS</th>
<th>< SEDIMENTARY ROCKS ></th>
<th>< IGNEOUS ROCKS ></th>
</tr>
</thead>
<tbody>
<tr>
<td>35.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

<table>
<thead>
<tr>
<th>GRAVELS</th>
<th>< SEDIMENTARY ROCKS ></th>
<th>< IGNEOUS ROCKS ></th>
</tr>
</thead>
<tbody>
<tr>
<td>30.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Composition of concrete according to EN 1367-4, table 1.
BIOTITIC GRANODIORITE

LOCALITY: KOŠICE - HRADOVÁ

MINERAL COMPOSITION:
25% quartz, 44% plagioclase,
15% biotite, 10% carbonate,
5% ore materials, 1% apatite

WATER ABSORPTION (%)
aggregate size 0/4 : 0.1
aggregate size 4/20 : 0.7
aggregate size 0/20 : 0.5

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4 : 2.77
aggregate size 4/20 : 2.71

SHAPE INDEX: 6 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:
DRIYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
LOCALITY: VÝŠNÝ KLÁTOV

MINERAL COMPOSITION:
85% amphibolite, 10% plagioclase, 3% zoisit, 2% hematite and quartz

WATER ABSORPTION (%)
aggregate size 0/4: 0.4
aggregate size 4/20: 0.9
aggregate size 0/20: 0.7

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 2.87
aggregate size 4/20: 2.92

SHAPE INDEX: 30%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
BARYTE

MINERAL COMPOSITION:
45% barite,
rest quartz, siderite, limonite

WATER ABSORPTION (%)
aggregate size 0/4: 0.1
aggregate size 4/20: 0.4
aggregate size 0/20: 0.3

PARTICLE DENSITY ρ_{ssd} (Mg.m$^{-3}$)
aggregate size 0/4: 3.58
aggregate size 4/20: 3.83

SHAPE INDEX: 8%

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:

DRYING SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)

COMPRESSIVE STRENGTH OF CONCRETE ACCORDING TO EN 12390-3 (MPa)

STATIC MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION ACC. TO ISO 6784 (GPa)

Note: Composition of concrete according to EN 1367-4, table 1.
LOCALITY: U.S. STEEL KOŠICE

CHEMICAL COMPOSITION:
36% SiO₂, 37% CaO, 12% MgO,
10% Al₂O₃, 1% FeO, 1% S

WATER ABSORPTION (%)
aggregate size 0/4 : 2,7
aggregate size 4/20 : 6,0
aggregate size 0/20 : 4,6

PARTICLE DENSITY ρ SSD (Mg.m⁻³)
aggregate size 0/4 : 2,68
aggregate size 4/20 : 2,47

SHAPE INDEX : 6 %

COMPARISON OF SELECTED PROPERTIES WITH OTHER LOCALITIES:
DRIED SHRINKAGE OF AGGREGATE ACCORDING TO EN 1367-4 (%)